RabinMiller算法

# -*- coding:utf-8 -*-
"""
@Author:    [email protected]
@Date:      2017-10-30

https://zh.wikipedia.org/zh-cn/%E7%B1%B3%E5%8B%92-%E6%8B%89%E5%AE%BE%E6%A3%80%E9%AA%8C
http://blog.miskcoo.com/2014/07/miller-rabin-primality-test
https://rosettacode.org/wiki/Miller%E2%80%93Rabin_primality_test

https://inventwithpython.com/rabinMiller.py

# Primality Testing with the Rabin-Miller Algorithm
# http://inventwithpython.com/hacking (BSD Licensed)

import random


def rabinMiller(num):
    # Returns True if num is a prime number.

    s = num - 1
    t = 0
    while s % 2 == 0:
        # keep halving s while it is even (and use t
        # to count how many times we halve s)
        s = s // 2
        t += 1

    for trials in range(5): # try to falsify num's primality 5 times
        a = random.randrange(2, num - 1)
        v = pow(a, s, num)
        if v != 1: # this test does not apply if v is 1.
            i = 0
            while v != (num - 1):
                if i == t - 1:
                    return False
                else:
                    i = i + 1
                    v = (v ** 2) % num
    return True


def isPrime(num):
    # Return True if num is a prime number. This function does a quicker
    # prime number check before calling rabinMiller().

    if (num < 2):
        return False # 0, 1, and negative numbers are not prime

    # About 1/3 of the time we can quickly determine if num is not prime
    # by dividing by the first few dozen prime numbers. This is quicker
    # than rabinMiller(), but unlike rabinMiller() is not guaranteed to
    # prove that a number is prime.
    lowPrimes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997]

    if num in lowPrimes:
        return True

    # See if any of the low prime numbers can divide num
    for prime in lowPrimes:
        if (num % prime == 0):
            return False

    # If all else fails, call rabinMiller() to determine if num is a prime.
    return rabinMiller(num)


def generateLargePrime(keysize=1024):
    # Return a random prime number of keysize bits in size.
    while True:
        num = random.randrange(2**(keysize-1), 2**(keysize))
        if isPrime(num):
            return num
"""

# Primality Testing with the Rabin-Miller Algorithm
# http://inventwithpython.com/hacking (BSD Licensed)

import sys
import time
import random
import logging
import datetime


LOGGING_LEVEL = logging.DEBUG


def logging_config():
    # log_format = "%(asctime)s [line: %(lineno)d] - %(levelname)s - %(message)s"
    log_format = "[line: %(lineno)d] - %(levelname)s - %(message)s"
    logging.basicConfig(level=LOGGING_LEVEL, format=log_format)


# https://en.wikibooks.org/wiki/Algorithm_Implementation/Mathematics/Primality_Testing
def is_probable_prime(n, k=7):
    """use Rabin-Miller algorithm to return True (n is probably prime)
        or False (n is definitely composite)"""
    if n < 6:  # assuming n >= 0 in all cases... shortcut small cases here
        return [False, False, True, True, False, True][n]
    elif n & 1 == 0:  # should be faster than n % 2
        return False
    else:
        s, d = 0, n - 1
        while d & 1 == 0:
            s, d = s + 1, d >> 1
        # Use random.randint(2, n-2) for very large numbers
        for a in random.sample(range(2, min(n - 2, sys.maxsize)), min(n - 4, k)):
            x = pow(a, d, n)
            if x != 1 and x + 1 != n:
                for r in range(1, s):
                    x = pow(x, 2, n)
                    if x == 1:
                        return False  # composite for sure
                    elif x == n - 1:
                        a = 0  # so we know loop didn't continue to end
                        break  # could be strong liar, try another a
                if a:
                    return False  # composite if we reached end of this loop
        return True  # probably prime if reached end of outer loop


def rabinMiller(num):
    # Returns True if num is a prime number.

    s = num - 1
    t = 0
    while s % 2 == 0:
        # keep halving s while it is even (and use t
        # to count how many times we halve s)
        s = s // 2
        t += 1

    for trials in range(5): # try to falsify num's primality 5 times
        a = random.randrange(2, num - 1)
        v = pow(a, s, num)
        if v != 1: # this test does not apply if v is 1.
            i = 0
            while v != (num - 1):
                if i == t - 1:
                    return False
                else:
                    i = i + 1
                    v = (v ** 2) % num
    return True


def isPrime(num):
    # Return True if num is a prime number. This function does a quicker
    # prime number check before calling rabinMiller().

    if (num < 2):
        return False # 0, 1, and negative numbers are not prime

    # About 1/3 of the time we can quickly determine if num is not prime
    # by dividing by the first few dozen prime numbers. This is quicker
    # than rabinMiller(), but unlike rabinMiller() is not guaranteed to
    # prove that a number is prime.
    lowPrimes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997]

    if num in lowPrimes:
        return True

    # See if any of the low prime numbers can divide num
    for prime in lowPrimes:
        if (num % prime == 0):
            return False

    # If all else fails, call rabinMiller() to determine if num is a prime.
    return rabinMiller(num)


def generateLargePrime(keysize=1024):
    # Return a random prime number of keysize bits in size.
    while True:
        num = random.randrange(2**(keysize-1), 2**(keysize))
        if isPrime(num):
            return num


def main():
    prime_list = [955963, 955967, 955987, 955991, 955993, 956003, 956051, 956057, 956083, 956107, 956113, 956119,
                  956143, 956147, 956177, 956231, 956237]

    print(generateLargePrime())
    print(isPrime(8148143905337944345073782753637512644205873574663745002544561797417525199053346824733589523))
    print(is_probable_prime(8148143905337944345073782753637512644205873574663745002544561797417525199053346824733589523))


if __name__ == "__main__":
    print("Script start execution at %s\n\n" % str(datetime.datetime.now()))
    time_start = time.time()

    logging_config()
    main()

    print("\n\nScript end execution at %s" % str(datetime.datetime.now()))
    print("Total Elapsed Time: %s seconds\n" % (time.time() - time_start))

results matching ""

    No results matching ""